August 4, 2022

Analyzing Dental X-rays With Artificial Intelligence


When you picture a hospital radiologist, you might think of a specialist who sits in a dark room and spends hours poring over X-rays to make diagnoses. Contrast that with your dentist, who in addition to interpreting X-rays must also perform surgery, manage staff, communicate with patients, and run their business. When dentists analyze X-rays, they do so in bright rooms and on computers that aren’t specialized for radiology, often with the patient sitting right next to them.

Is it any wonder, then, that dentists given the same X-ray might propose different treatments?

“Dentists are doing a great job given all the things they have to deal with,” says Wardah Inam SM ’13, PhD ’16.

Inam is the co-founder of Overjet, a company using artificial intelligence to analyze and annotate X-rays for dentists and insurance providers. Overjet seeks to take the subjectivity out of X-ray interpretations to improve patient care.

“It’s about moving toward more precision medicine, where we have the right treatments at the right time,” says Inam, who co-founded the company with Alexander Jelicich ’13. “That’s where technology can help. Once we quantify the disease, we can make it very easy to recommend the right treatment.”

Overjet has been cleared by the Food and Drug Administration to detect and outline cavities and to quantify bone levels to aid in the diagnosis of periodontal disease, a common but preventable gum infection that causes the jawbone and other tissues supporting the teeth to deteriorate.

In addition to helping dentists detect and treat diseases, Overjet’s software is also designed to help dentists show patients the problems they’re seeing and explain why they’re recommending certain treatments. The company has already analyzed tens of millions of X-rays, is used by dental practices nationwide, and is currently working with insurance companies that represent more than 75 million patients in the U.S. Inam is hoping the data Overjet is analyzing can be used to further streamline operations while improving care for patients.


Read More…